Printed Page: 1 of 2 Subject Code: EME102

Roll No:

BTECH

(SEM II.) THEORY EXAMINATION 2020-21 **ENGINEERING MECHANICS**

Time: 3 Hours

1.

Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

|--|

a.	State and prove varignon's theorem.
b.	Define parallelogram law of forces.
c.	Explain the laws of static friction.
d.	What do you mean by point of contraflexure?
e.	Define radius of gyration.
f.	What do you mean by linear motion? Give some examples of linear motion.
g.	What do you understand by velocity and acceleration?
h.	Define the terms: impulse and moment of momentum.
i.	Explain the various forms of mechanical energies.
j.	Define modulus of rigidity.

SECTION B

2. Attempt any *three* of the following:

Attempt all questions in brief.

10x3=30 A uniform rod AB of length 3r remains in equilibrium on a hemispherical bowl of a. radius r as shown in fig. ignoring friction find the inclination of rod ' θ ' with the horizontal. A simply supposed beam AB is carrying a uniformly distributed load of intensity w b. N/m. Draw the shear force and bending moment diagrams. From the first principle, determine the moment of inertia of a triangle about its c. centroidal axis parallel to the base. State and prove work energy principle. d. Define stress, strain and their types as well. e.

SECTION C

3. Attempt any one part of the following:

a.	A circular roller of radius 5 cm and weight 100 N rests on a smooth horizontal surface and is held in position by an inclined bar AB of length 10 cm as shown in fig. A horizontal force of 200 n is acting at B. Find the tension in the bar AB and vertical reaction at C.
b.	Derive the expression between tensions on tight side and slack side in a belt.

Download all NOTES and PAPERS at StudentSuvidha.com

4. Attempt any *one* part of the following:

Roll No:

5. Attempt any *one* part of the following:

a.	Define Moment of inertia. Sate and prove perpendicular axis theorem
b.	Locate the centroid of the area of the parabolic shaded portion shown in figure .
	y y
	\mathbf{T}
	The second se
	$k_{1}^{2} = kr^{2}$
	hides h
	10 10 10 10 10 10 10 10 10 10 10 10 10 1

6.	Attempt any one part of the following:
a.	The motion of a particle is given by $a = t^3 - 3t^2 + 5$, where 'a' is acceleration in
	m/s^2 and 't' is time in seconds. The velocity of the particle at t= 1 second 6.25 m/s
	and the displacement is 8.8 m. Calculate the displacement and velocity at $t = 2$
	seconds.
b.	A passenger sitting in a train moving at 54 km/hr is hit by a stone thrown at right
	angles to it with a velocity of 18 km/hr. calculate the velocity and direction with
	which the stone appears to hit the passenger.
7.	Attempt any one part of the following:
a.	List the assumptions made in simple bending theory. Derive the simple bending
	equation.
b.	Draw a typical stress- strain curve for mild steel and explain the salient points on it.

Download all NOTES and PAPERS at StudentSuvidha.com